Project ID: elt248

Multi-Objective Design Optimization of 100-kW Non-Rare-Earth or Reduced-Rare-Earth Machines

Scott Sudhoff and Steve Pekarek Purdue University June 21-25, 2021

Overview

Timeline

Project Start: May 2019

Project End: May 2024

Percent Complete: 40%

Budget

Total DOE Project Funding

School of Electrical and

Computer Engineering

- \$1.5M over 5 years
 - \$300k per year

Barriers

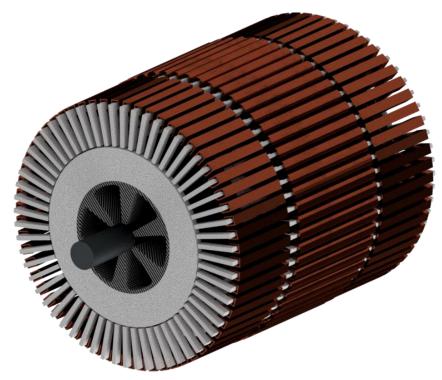
- Electrical and Electronics Technical Team Roadmap October 2017
 - Non-rare-earth machines as insurance policy against rare-earth magnet price volatility
 - Improved materials (i.e. copper, steel) to cut costs in half and double reliability
 - Understanding of system-level trade-offs (i.e. cost/performance impact of material substitution)

Partners

- Oak Ridge National Laboratory
 - Burak Ozpineci, Jason Pries, Tsarafidy Raminosa
- Sandia National Laboratories
 - Bob Kaplar, Jason Neely, Lee Rashkin, Todd Monson
- University of Wisconsin
 - Thomas Jahns, Bulent Sarlioglu
- Illinois Institute of Technology
 - Ian Brown
- NC State University
 - Iqbal Husain

Relevance

Design Tools and Methods


- To meet 2025 goals for enhanced peak power (100 kW), specific power (50 kW/L) and reduced cost requires the ability to:
 - Establish system-level trade-offs (i.e. cost versus efficiency)
 - Rapidly explore the impact of new materials (i.e. Fe4N)
 - Quickly develop design models of new machine topologies (i.e. non-rare-earth machines)
 - Rigorously compare alternative machine topologies via Pareto-optimal fronts
- Magnetic Analysis: Developed Method of Moment Toolbox
 - High-speed alternative to FEA
 - Open source available to world! (delivered this year)
- High-Frequency Loss Modeling (last year)
- Non-Axis Symmetric Sleeve Analysis (this year)

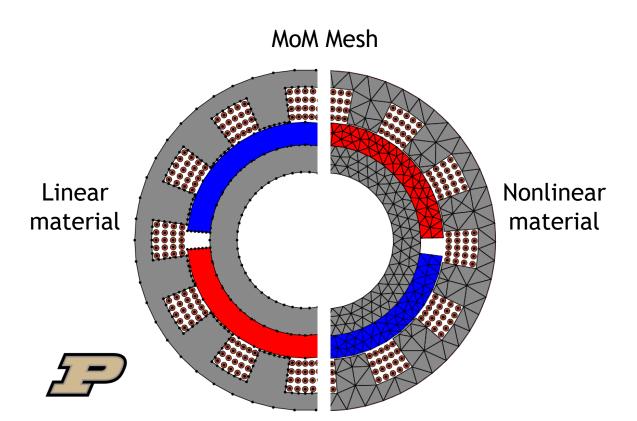
Relevance

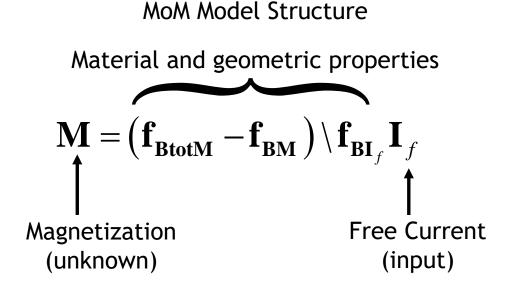
Novel Machines

- Desire for electric vehicle drive cost to be both stable and low
 - · Avoid machines with certain problematic rare-earth materials
 - Avoid machines with rotating windings
 - Support a large constant power speed range
 - Can be readily manufactured
- Dual Field Homopolar AC Machine
 - Infinite constant power speed range
 - Field winding, if used, is stationary (PM free)
 - Magnets, if used, can be stationary
 - Stator is inherently segmented
- Inert Core Machines
 - Dual airgap for high torque density
- Rotationally Asymmetric Reluctance Machine
 - PM free; optimized for one rotational direction

Dual Field Homopolar AC Machine

Milestones: Budget Period 2 (Revised)

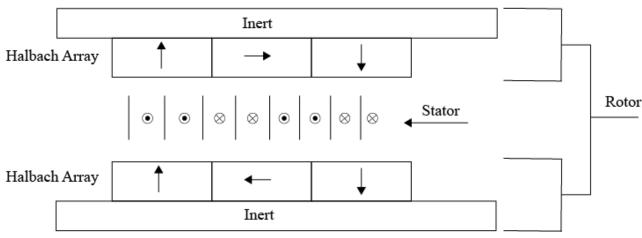

Time	Туре	Description of Milestone or Go/No-Go Decision	Status
BP2-Q1	Tech	A plan for the magnetic modeling of the two proposed HAM variants will be in place.	Met
BP2-Q2	Tech	An analytical method of calculating the relevant stresses and strains on an electric machine retention sleeve will be set forth.	Met
BP2-Q3	Tech	The Pareto-optimal front of the ICPM will be compared to that of a standard PMSM.	Met
BP2-Q4	Go / No-Go	The MoM method will be applied to the design of an asymmetrical reluctance machine. The time required on a high-end desktop machine will be such that this is a pragmatic way to design the machine.	Met



Approach - Design Tools and Methods

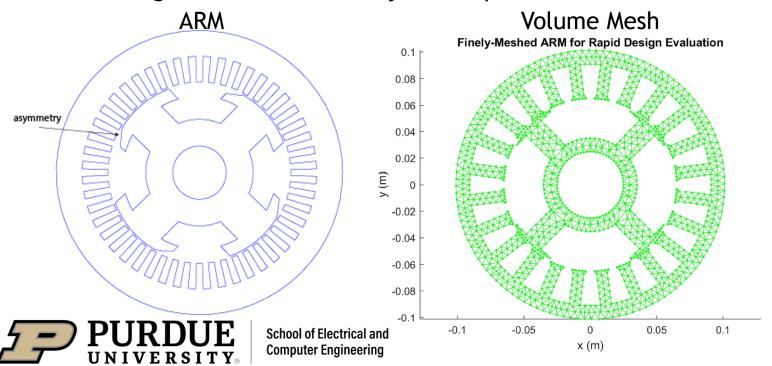
Method of Moments Toolbox

- Establish Matlab-based toolboxes to support design of variety of electric machinery
 - Distributed to community to help promote rigorous multi-objective optimization of machines
 - Extended to new types of machinery (inert-core, asymmetric reluctance) to enable comparison of wide range of options



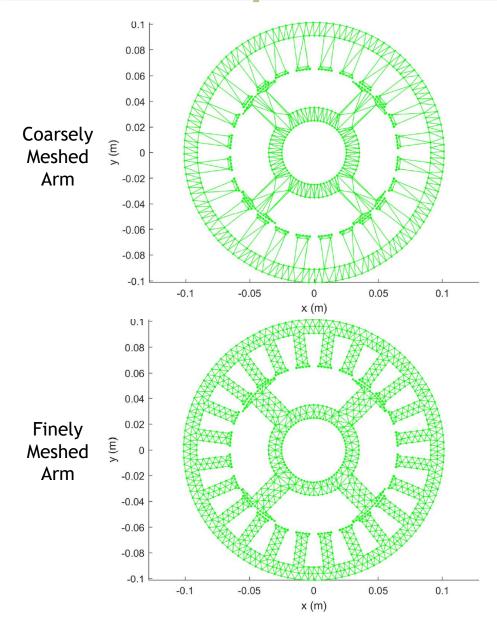
Developed Computational Engine of MoM Toolbox

- Provided a MoM Toolbox for PMSMs to community (https://engineering.purdue.edu/ECE/Research/Areas/PES/Software/Method-of-Moments-Toolbox)
- Extended MoM to develop toolboxes for design of inert-core PMSM and asymmetric reluctance machines


Method of Moments Toolbox Method of Moments Toolbox - PMS Active Length (m) 0.02705 ▼ Relative Permeability 2.74e+04

Inert-core PMSM

Asymmetric Reluctance Machine (ARM)


- Asymmetry included in rotor to enhance torque density
- No permanent magnets
- Requires MoM evaluation that includes magnetic saturation (volume mesh)
- Established MoM Galerkin nonlinear solver and evaluated mesh density/solve times
- Finalizing toolbox for multi-objective optimization of ARM

MoM Galerkin Structure

$$\mathbf{M} = (\mathbf{f}_{\mathbf{BtotM}} - \mathbf{f}_{\mathbf{BM}}) \setminus \mathbf{f}_{\mathbf{BI}_f} \mathbf{I}_f$$

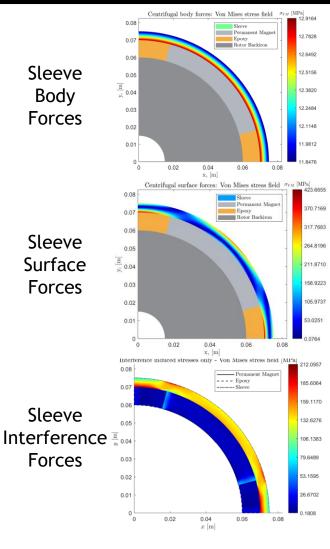
Tangent magnetization as unknown (as opposed to xand y-component)

Evaluation of MoM computational performance

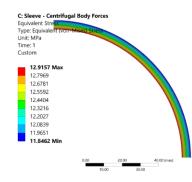
	Coarse Mesh	Fine Mesh
Triangles	214	414
Elements	642	1242
System Matrix	642x642	1242x1242
Mesh	0.404 s	0.390 s
Matrix Fill	1.702 s	9.684 s
Solve	0.906 s	1.598 s
Observation	0.377 s	0.652 s
Torque	0.346 s	1.728 s
Total Comp Time	3.75 s	14.052 s

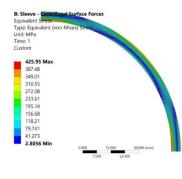
Rotor Position	Iteration Count Coarse Mesh	Iteration Count Fine Mesh
1	8	5
2	16	7
3	19	5
4	22	5
5	16	6
6	12	4

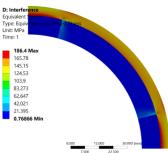
- Less than 2% difference in average torque using coarse mesh
- MoM enables rigorous multi-objective optimization (MOO)

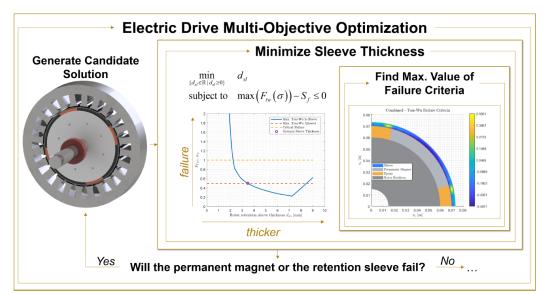

Approach - Design Tools and Methods

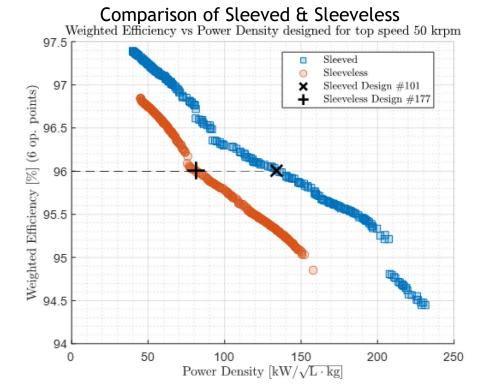
Retention Sleeve Analysis


- Technical Approach:
 - Create a <u>computationally efficient means</u> to determine magnet and sleeve stresses based on body forces, sleeve forces, and interference induced forces
 - Key difficulty: address non-axisymmetric geometries
- Project Integration
 - Created combined optimization of machine with sleeve
- Milestone: Full Report with Design Comparison -BP2-Q2
 - Full report and numerically validated approach delivered with BP2-Q2 Quarterly Report


Goal: Integrate the sleeve design process into the machine design process.

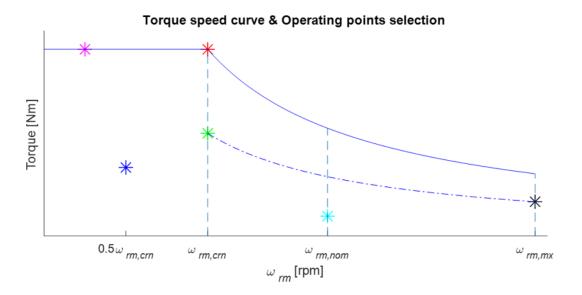






Retention Sleeve Analysis

- Integration of sleeve design into machine deign
 - Based on an optimization within an optimization approach
 - Given a candidate rotor design, an algorithm to choose an appropriate sleeve thickness is executed, based on Tsai-Wu failure criteria
 - Sleeved and sleeveless approaches can then be compared



A means of integrating sleeve analysis for non-axisymmetric sleeve design into the machine design process has been achieved (the axisymmetric case is straightforward).

Approach - Novel Machines

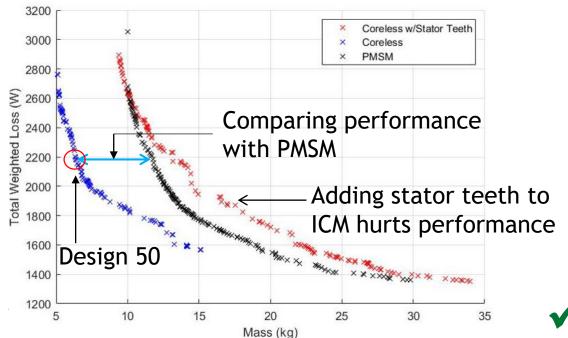
Basis of Machine Comparisons

	Op1	Op2	Op3	Op4	Op5	Op6
Speed	$\omega_{rm,crn}$	$\omega_{rm,crn}$	$\omega_{rm,mx}$	$\omega_{rm,crn}/2$	$\omega_{rm,nom}$	$\omega_{rm,nom}/4$
Power	$P_{mx,pk}$	$P_{mx,ct}$	$P_{mx,ct}$	$P_{mx,ct}/3$	$P_{mx,ct}/3$	$P_{mx,ct}/4$
Weight	5%	15%	5%	20%	40%	15%

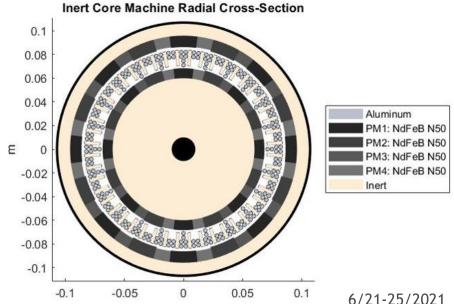
Rating	Value
α_{CPSR}	3
$P_{\mathrm{mx},pk}(kW)$	100
$P_{\mathrm{mx},ct}(kW)$	55
$P_{\text{nom},ct}(kW)$	27.5
$\omega_{rm,mx}$ (rpm)	20,000
$\omega_{rm,crn}$ (rpm)	$\omega_{rm,mx}/lpha_{CPSR}$
$\omega_{rm,nom}$ (rpm)	$\sqrt{\omega_{rm,crn}\omega_{rm,mx}}$

Minimize weighted loss and size for each machine topology.

Compare machines in terms of Pareto-optimal fronts


12

Accomplishments - Novel Machines


Inert-Core Machine (ICM)

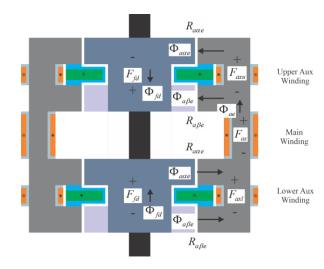
- Halbach-based array on inner and outer rotors
- Eliminate (or greatly reduce) stator/rotor steel
- MoM-based design tool enables exploration of wide range of magnets materials/geometries
- Initial electromagnetic design indicates significant reduction in mass/volume compared to permanent magnet synchronous machine (PMSM)

Pareto-optimal fronts of ICM versus PMSM

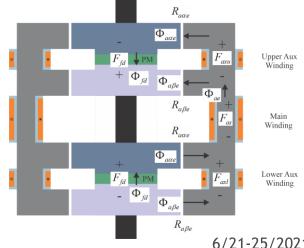
Design 50 from Pareto-optimal front

Milestone: Design comparison of ICM/PMSM - BP2-Q3

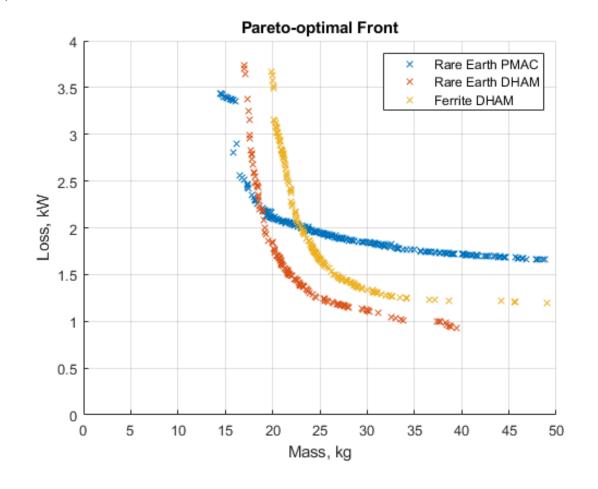
Accomplishments - Novel Machines


Dual Field Homopolar AC Machine (DHAM)

- Technical Approach:
 - Originate novel Homopolar Machine topologies to <u>reduce</u> or <u>eliminate</u> rare-earth material usages.
 - Derive magnetic modeling of the proposed electric machine to facilitate the development of other key elements such as winding bundle placement, excitation strategies, and detailed rotor geometry.
 - From the acquired magnetic model, generate optimal designs based on a rigorous multi-objective optimization.
- *Project Integration*: The design study evaluates the proposed topologies in terms of power density and cost effectiveness.
- ✓ Milestone: Proposed Homopolar Machine BP2-Q1
 A plan for the magnetic modeling of the proposed homopolar machine will be complete.


Goal: Develop novel high-speed propulsion motor with high power density and low cost.

Field-based DHAM


Magnet-based DHAM

Accomplishments - Novel Machines

Dual Field Homopolar AC Machine (DHAM)

- Auxiliary windings self-excite and do not need external excitation.
- Infinite constant power speed range, even when using magnets (electrically).
- Main windings have sinusoidal voltages and currents and produce constant torque (ideally)
- Can be built using field windings, rotating magnets, or stationary magnets
 - Stationary magnets can be readily cooled avoiding high-temp magnet operation.
- Inherent use of segmented stator for easy construction
- Simple and robust rotor
- Can house power electronics within internal structure

Response to Prior AMR Comments

Approach to Performing the Work

- Chief Criticism: Homopolar topology may not meet DOE requirements
- Response: A breakthrough will likely require a consideration of non-conventional topologies.
 With regard to the homopolar machine, a new variant of the homopolar machine developed this year (the Dual Field Homopolar AC Machine) looks very promising.

Collaboration & Coordination

Collaborations in Power Converters, Materials, & Machines

- Biweekly meetings with the Oak Ridge Motor Team
 - Oak Ridge National Lab (Burak Ozpineci, Tsarafidy Raminosa)
 - Sandia National Labs (Bob Kaplar, Jason Neely, Lee Rashkin, Todd Monson)
 - University of Wisconsin (Thomas Jahns, Bulent Sarlioglu)
 - Illinois Institute of Technology (Ian Brown)
 - NC State University (Igbal Husain)
 - Purdue University (Scott Sudhoff, Steve Pekarek)
 - One present focus is uniform drive system targets (success achieved!)

- Biweekly meetings with Sandia National Labs
 - Jason Neely (inverters, elt223)
 - Lee Rashkin (inverters, elt223)
 - Todd Monson (materials, elt216)
 - Focus of meetings is
 - Machine/inverter interaction issues
 - Possibilities of new materials
- (Approximately) Quarterly coordination review (coordinated by Vipin Gupta, Sandia)
- All collaborations listed are within VTO
- All groups independently funded by DOE/VTO office

Remaining Challenges & Barriers

Design Tools & Methods

Adding thermal/structural models to inert-core and asymmetric reluctance machines

Novel Machines

- Dual Field Homopolar AC Machine
 - Magnetic model needs to be improved
 - Inverter losses needed to be added
 - Rotor shaping algorithm is not completely satisfactory
 - Comparison to conventional machine topologies
 - Concern: torque density is modest however, the power electronics can be placed inside of the machine.
- Asymmetrical Reluctance and Inert-Core PM Machines
 - Following thermal/structural model development compare to conventional machine topologies
 - Concern: cooling inert-core machine may be a challenge due to lack of stator iron
 - Concern: asymmetric reluctance machine may not meet volume/mass of PM-based machines, likely much lower cost

Proposed Future Research

Topics for 2021 and 2022

- Design Tools & Methods
 - Thermal/structural models added to MoM-based design toolboxes
- Using the work of the first two years, following machines will be rigorously compared through comparison of Pareto-optimal fronts
 - Surface mounted permanent magnet ac machine
 - Dual field homopolar ac machine
 - Inert core permanent magnet ac machine
 - Asymmetrical reluctance machine
- NOTE: Designs evaluated based on specifications of ORNL led machine design group: ORNL,
 Sandia, Purdue, IIT, Wisconsin, NC State
 - 20,000 rpm maximum speed, 100 kW peak power, 55 kW continuous power, 3-to-1 constant power speed range, 143 Nm peak torque
 - Designs will satisfy the design criteria above and will be compared in terms of their Pareto-optimal fronts of aggregate loss versus size

Proposed Future Research

School of Electrical and

Computer Engineering

Time	Туре	Description of Milestone or Go/No-Go Decision	Status
BP3-Q1	Tech	Comparison of the Pareto optimal fronts of Homopolar and PMAC machines will be completed.	Pending
BP3-Q2	Tech	Design code for an ICPM including structural and thermal analysis will be completed.	Pending
BP3-Q3	Tech	Design code for an Asymmetric Reluctance Machine structural and thermal analysis will be completed.	Pending
BP3-Q4	Go / No-Go	Pareto optimal fronts will be demonstrated to have converged.	Pending

Summary

Design Tools & Methods

- A MoM-based toolbox for PMSMs was finalized and made publicly available at no charge. The MoM approach was then extended to develop design tools for alternative machine topologies.
- An analytical method of computing sleeve stress for non axis-symmetric PMAC machines was developed and integrated into a PMAC design code.

Novel Machines

- A Dual field homopolar ac machine concept has been invented and appears promising. It is a machine with sinusoidal voltages and currents, constant torque, and has an infinite constant power speed range. It can be constructed with a field winding, a rotating permanent magnet, or a stationary permanent magnet for a field.
- Design codes for inert-core permanent-magnet ac machines and a rotationally asymmetric reluctance machine have been developed. These machines also appear promising.